• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
UT Shield
Multiscale Nanotechnology Group
  • HOME
  • PEOPLE
    • Former PhDs and Postdocs
  • RESEARCH
    • Nanofluidics
    • Nanobiotechnology
    • Nanomaterials/NEMS
    • Soft matter
    • MEMS
  • JOURNAL PUBLICATIONS
    • All Publications
    • Nanofluidics
      • Fundamentals, Nanopores, Interfaces and Applications
      • Multiscale Analysis
      • Force fields, Coarse graining, Machine Learning
      • Micro/Nanojunctions
    • Nanobiotechnology
      • Sequencing, Sensing, Biological Channels
    • Nanomaterials/NEMS
      • Multiphysics and Multiscale Analysis
      • Properties, Interfaces, Dissipation, Sensing
      • Energy Storage and Conversion
    • Soft Matter
      • Droplets, Polymers, Lipids, Hydrogels, Nanoparticles
    • MEMS
      • Multiphysics Analysis
      • Microfluidics
      • Uncertainty quantification
  • TEACHING
  • OPPORTUNITIES
    • Graduate Students
    • Postdoctoral Fellows
    • Undergraduate Students

Uncertainty quantification

MEMS – Uncertainty Quantification:

  • Alwan and N. R. Aluru, “Analysis of the effect of spatial uncertainties on the dynamic behavior of electrostatic microactuators”, Communications in Computational Physics, Vol. 20, No. 2, pp. 279-300, 2016. 
  • Alwan and N. R. Aluru, “Data-driven stochastic models for spatial uncertainties in micromechanical systems”, Journal of Micromechanics and Microengineering, Vol. 25, No. 11, Art. No. 115009, 2015.
  • Alwan and N. R. Aluru, “A nonstationary covariance function model for spatial uncertainties in electrostatically actuated microsystems”, International Journal for Uncertainty Quantification, Vol. 5, No. 2, pp. 99-121, 2015. 
  • Alwan and N. R. Aluru, “Improved statistical models for limited datasets in uncertainty quantification using stochastic collocation”, Journal of Computational Physics, Vol. 255, pp. 521-539, 2013. 
  • P. Sumant, H. Wu, A. Cangellaris, and N. R. Aluru, “Reduced-order models of finite element approximations of electromagnetic devices exhibiting statistical variability”, IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, pp. 301-309, 2012. 
  • Alwan and N. R. Aluru, “Uncertainty quantification of MEMS using a data-dependent adaptive stochastic collocation method”, Computer Methods in Applied Mechanics and Engineering, Vol. 200, No. 45-46, pp. 3169-3182, 2011.
  • N. Agarwal and N. R. Aluru, “Weighted Smolyak algorithm for solution of stochastic differential equations on non-uniform probability measures”, International Journal for Numerical Methods in Engineering, Vol. 85, No. 11, pp. 1365-1389, 2011. 
  • N. Agarwal and N. R. Aluru, “A data-driven stochastic collocation approach for uncertainty quantification in MEMS”, International Journal for Numerical Methods in Engineering, Vol. 83, No. 5, pp. 575-597, 2010.
  • N. Agarwal and N. R. Aluru, “Stochastic analysis of electrostatic MEMS subjected to parameter variations”, Journal of Microelectromechanical Systems, Vol. 18, No. 6, pp. 1454-1468, 2009. 
  • N. Agarwal and N. R. Aluru, “A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties”, Journal of Computational Physics, Vol. 228, No. 20, pp. 7662-7688, 2009. 
  • N. Agarwal and N. R. Aluru, “Stochastic modeling of coupled electromechanical interaction for uncertainty quantification in electrostatically actuated MEMS”, Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 43-44, pp. 3456-3471, 2008. 
  • N. Agarwal and N. R. Aluru, “A stochastic Lagrangian approach for geometrical uncertainties in electrostatics”, Journal of Computational Physics, Vol. 226, No. 1, pp. 156-179, 2007.

Primary Sidebar

Group News

  • Sequencing Peptides with Single Amino Acid Resolution!
  • Catalysis-Mediated Separation of Critical Minerals
  • Congratulations to Hananeh!
  • Open Positions!
  • Tuning Electron Wind Forces at Interfaces!
  • Group Members Receive CSE Continuing Fellowships!
  • IR Spectra of an Ionic Liquid
  • Alumnus Update!
  • Molecular Denoising using Generative Models!
  • Thermal Energy Constraint for NEMD!

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025