**Peer Reviewed Publications:**

99. T. Jang, M. Uppaluri, K. Seo, V. Ramadesigan, V. R. Subramanian, “A Sparse Differential Algebraic Equation (DAE) and Stiff Ordinary Differential Equation (ODE) Solver in Maple”, Maple Trans., 3 (4), (2024). [pdf]

98. T.R. Garrick, Y Zeng, J.B. Siegel, VR Subramanian, “From Atoms to Wheels: The Role of Multi-Scale Modeling in the Future of Transportation Electrification”, J. Electrochem. Soc., 170, 113502 (2023).[pdf]

97. T Jang, L Mishra, A Subramaniam, M Uppaluri, V Ramadesigan, T.R. Garrick, V. R. Subramanian, “Addressing Mass Conservation in Two-dimensional Modeling of Lithium Metal Batteries with Electrochemically Plated/Stripped Interfaces”, J. Electrochem. Soc., 170, 110516 (2023).[pdf]

96. T.K. Telmasre, L Mishra, R.S. Thiagarajan, A Subramaniam, V. Ramadesigan, T.R. Garrick, V. R. Subramanian, “Initial Current Discrepancy in Simulating Lithium-Ion Battery Packs – Resolution from Dr. Ralph White’s Analytical Approach”, J. Electrochem. Soc., 170, 103512 (2023).[pdf]

95. Akshay Subramaniam, Suryanarayana Kolluri, Taejin Jang, Rayan Charab, Daniel Jimenez, Francisco Trinidad, Diptarka Majumdar, Venkat R Subramanian, “Electrochemical Model for a Three-Electrode Lead Acid Cell: Boundary Conditions for Asymmetric Configurations”, J. Electrochem. Soc., 170, 103511 (2023).[pdf]

94. J. Lim, D. Koh, S. Kolluri, M. Uppaluri, A. Subramaniam, and V. R. Subramanian, “Efficient Electrochemical State of Health Model for Lithium Ion Batteries under Storage Conditions”, J. Phys. Chem. C. (2023). DOI:10.1021/acs.jpcc.2c07752

93. R. S. Thiagarajan, A. Subramaniam, S. Kolluri, T. R. Garrick, Y. Preger, V. D. Angelis, J. Lim, and V. R. Subramanian, “Efficient Reformulation of Linear and Nonlinear Solid-Phase Diffusion in Lithium-ion Battery Models using Symmetric Polynomials: Mass Conservation and Computational Efficiency”, J. Electrochem. Soc., 170, 010528 (2023). [pdf]

92. A. Mishra, V. R. Subramanian, and B. Suthar, “Hexic Polynomial Approximation for Spherical Diffusion to Accelerate Accurate Lithium-Ion Battery Simulation”, J. Electrochem. Soc., 169, 120532 (2022).[pdf]

91. T. Telmasre, N. Goswami, A. Concepción, S. Kolluri, M. Pathak, G. Morrison, and V. R. Subramanian, “Impedance response simulation strategies for lithium-ion battery models”, Curr. Opin. Electrochem., 36, 101140 (2022). DOI:10.1016/j.coelec.2022.101140

90. M. Wang, M. Mesbahi, S. Kolluri, K. A. Shah, and V. R. Subramanian, “Energy management for an All-Electric Aircraft via Optimal Control”, IEEE Trans Aerosp Electron Syst. DOI:10.1109/TAES.2022.3196634

89. T. Jang, L. Mishra, S. A. Roberts, B. Planden, A. Subramaniam, M. Uppaluri, D. Linder, M. P. Gururajan, J. Zhang, and V. R. Subramanian, “BattPhase—A Convergent, Non-Oscillatory, Efficient Algorithm and Code for Predicting Shape Changes in Lithium Metal Batteries Using Phase-Field Models: Part I. Secondary Current Distribution”, J. Electrochem. Soc., 169, 080516 (2022). [pdf]

88. S. Kolluri, P. Mittal, A. Subramaniam, Y. Preger, V. D. Angelis, V. Ramadesigan, and V. R. Subramanian, “A Tanks-in-Series Approach to Estimate Parameters for Lithium-Ion Battery Models”, J. Electrochem. Soc., 169, 050525 (2022). [pdf]

87. L. Shi, C. S. Anderson, L. Mishra, H. Qiao, N. Canfield, Y. Xu, C. Wang, T. Jang, Z. Yu, S. Feng, P. M. Le, V. R. Subramanian, C. Wang, J. Liu, J. Xiao, D. Lu, “Early Failure of Lithium–Sulfur Batteries at Practical Conditions: Crosstalk between Sulfur Cathode and Lithium Anode”, Adv. Sci. 2201640 (2022). [pdf]

86. M. Uppaluri, K. Shah, V. Viswanathan, and V. R. Subramanian, “The Importance of a Moving Boundary Approach for Modeling the SEI Layer Growth to Predict Capacity Fade”, J. Electrochem. Soc., 169, 040548 (2022). [pdf]

85. C. D. Parke, L. Teo, D. T. Schwartz, and V. R. Subramanian, “Progress on continuum modeling of lithium–sulfur batteries”, Sustainable Energy & Fuels, (2021). DOI: 10.1039/d1se01090e

84. A. Mistry, A. Verma, S. Sripad, R. Ciez, V. Sulzer, F. B. Planella, R. Timms, Y. Zhang, R. Kurchin, P. Dechent, W. Li, S. Greenbank, Z. Ahmad, D. Krishnamurthy, A. M. Fenton, K. Tenny, P. Patel, D. J. Robles, P. Gasper, A. Colclasure, A. Baskin, C. D. Scown, V. R. Subramanian, E. Khoo, S. Allu, D. Howey, S. DeCaluwe, S. A. Roberts, and V. Viswanathan, “A Minimal Information Set To Enable Verifiable Theoretical Battery Research”, ACS Energy Lett., 6, 3831-3835 (2021). [pdf]

83. L. Mishra, A. Subramaniam, T. Jang, K. Shah, M. Uppaluri, S. A. Roberts, and V. R. Subramanian, “Perspective – Mass Conservation in Models for Electrodeposition/Stripping in Lithium Metal Batteries”, J. Electrochem. Soc., 168, 092502 (2021). [pdf]

82. A. J. Crawford, D. Choi, P. J. Balducci, V. R. Subramanian, and V. V. Viswanathan, “Lithium-ion battery physics and statistics-based state of health model”, J. Power Sources, 501, 230032 (2021). [pdf]

81. C. D. Parke, A. Subramanian, V. R. Subramanian, and D. T. Schwartz, “Realigning the Chemistry and Parameterization of Lithium‐Sulfur Battery Models to Accommodate Emerging Experimental Evidence and Cell Configurations”, ChemElectroChem, 8(6), 1098-1106 (2021). [pdf]

80. L. Teo, V. R. Subramanian, and D. T. Schwartz “Dynamic Electrochemical Impedance Spectroscopy of Lithium-ion Batteries: Revealing Underlying Physics through Efficient Joint Time-Frequency Modeling”. J. Electrochem. Soc., 168, 010526 (2021). [pdf]

79. M. Uppaluri, A. Subramaniam, L. Mishra, V. Viswanathan, and V. R. Subramanian “Can a Transport Model Predict Inverse Signatures in Lithium Metal Batteries Without Modifying Kinetics?”. J. Electrochem. Soc., 167, 160547 (2020). [pdf]

78. C. D. Parke, A. Subramaniam, S. Kolluri, D. T. Schwarz, and V. R. Subramanian “An Efficient Electrochemical Tanks-in-Series Model for Lithium Sulfur Batteries”. J. Electrochem. Soc., 167, 163503 (2020). [pdf]

77. K. Shah, A. Subramaniam, L. Mishra, T. Jang, M. Z. Bazant, R. D. Braatz, and V. R. Subramanian “Challenges in Moving to Multiscale Battery Models: Where Electrochemistry Meets and Demands More from Math”. J. Electrochem. Soc., 167, 133501 (2020). [pdf] (Editor’s Choice-Perspective)

76. A. Subramaniam, S.Kolluri, S. Santhanagopalan, and V. R. Subramanian “An Efficient Electrochemical-Thermal Tanks-in-Series Model for Lithium-Ion Batteries”. J. Electrochem. Soc., 167, 113506-113506-28 (2020). [pdf]

75. Y. Cao, S. B. Lee, V. R. Subramanian, and V. M. Zavala, “Multiscale model predictive control of battery systems for frequency regulation markets using physics-based models”. J. Process Control, 90, 46-55 (2020).

74. S. Kolluri, S. V. Aduru, M. Pathak, R. D. Braatz, and V. R. Subramanian, “Real-time Nonlinear Model Predictive Control (NMPC) Strategies using Physics-Based Models for Advanced Lithium-ion Battery Management System (BMS)”. J. Electrochem. Soc., 167, 063505-063505-13 (2020). [pdf]

73. A. Subramaniam, S. Kolluri, C. D. Parke, M. Pathak, S. Santhanagopalan, and V. R. Subramanian, “Properly Lumped Lithium-ion Battery Models: A Tank-in-Series Approach”. J. Electrochem. Soc., 167 013534-013534-18 (2020). [pdf]

72. A. Subramaniam, J. Chen, T. Jang, N. R. Geise, R. M. Kasse, M. F. Toney, and V. R. Subramanian, “Analysis and Simulation of One-dimensional Transport Models for Lithium Symmetric Cells”. J. Electrochem. Soc., 166 (15), A3806-A3819 (2019). [pdf]

71. S. B. Lee, K. Mitra, H. D. Pratt III, T. M. Anderson, V. Ramadesigan, B. R. Chalamala, and .V. R. Subramanian, “Open Data, Models, and Codes for Vanadium Redox Batch Cell Systems: A Systems Approach using Zero-Dimensional Models”. J. Electrochem. En. Conv. and Stor., 17(1), 011008-011008-19 (2019).[pdf]

70. B. Hellner, S. B. Lee, A. Subramaniam, V. R. Subramanian, and F. Baneyx, “Modeling the Cooperative Adsorption of Solid-Binding Proteins on Silica: Molecular Insights from SPR Measurements”. Langmuir, 35(14), 5013-5020 (2019).[Link]

69. N. Dawson-Elli, S. Kolluri, K. Mitra and V. R. Subramanian,”On the Creation of a Chess-AI-Inspired Problem-Specific Optimizer for the Pseudo Two-Dimensional Battery Model Using Neural Networks”. J. Electrochem. Soc., 166(6) A886-A896 (2019).[pdf]

68. J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Y.S. Meng, V.R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X. Yang, and J. Zhang, “Pathways for practical high-energy long-cycling lithium metal batteries”. Nature Energy, 4, 180-186 (2019).[Link]

67. M. Pathak, M. D. Murbach, C. Pathak, T. Jang, Y. Qi, D. T. Schwartz, and V. R. Subramanian, “Fast Impedance Simulation of Lithium-Ion Batteries with Pseudo-Two Dimensional Electrochemical Models”. J. Electrochem. Soc., 165(7), A1324-A1337 (2018).[pdf]

66. N. Dawson-Elli, S. B. Lee, M. Pathak, K. Mitra, and V. R. Subramanian, “Data Science Approaches for Electrochemical Engineers: An Introduction through Surrogate Model Development for Lithium-Ion Batteries”. J. Electrochem. Soc., 165(2), A1-A15 (2018).[pdf]

65. S.S. Miriyala, V. R. Subramanian, and K. Mitra, “TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study”. European J. of Operational Research, 264(1), 294-309 (2018).[pdf]

64. Y. Qi, T. Jang, V. Ramadesigan, D. T. Schwartz, and V. R. Subramanian, “Is There a Benefit in Employing Graded Electrodes for Lithium-Ion Batteries?”, J. Electrochem. Soc., 164(13) A3196-A3207 (2017).[pdf]

63. K. Shah, N. Balsara, S. Banerjee, M. Chintapalli, A. P. Cocco, W. K. S. Chiu, I. Lahiri, S. Martha, A. Mistry, P. P. Mukherjee, V. Ramadesigan, C. S. Sharma, V. R. Subramanian, S. Mitra and A. Jain, “State of the Art and Future Research Needs for Multiscale Analysis of Li-Ion Cells”, J. Electrochem. En. Conv. Stor., 14(2), 020801-020801-17 (2017).[pdf]

62. T. S. Chadha, B. Suthar, D. Rife, V.R. Subramanian, and P. Biswas, “Model Based Analysis of One-Dimensional Oriented Lithium-Ion Battery Electrodes”, J. Electrochem. Soc., 164(11), E3114-E3121 (2017).[pdf]

61.M. Pathak, S. Kolluri, and V. R. Subramanian, “Generic Model Control for Lithium-Ion Batteries”, J. Electrochem. Soc., 164 (6), A973-A986 (2017).[pdf]

60. S. B. Lee, C. Pathak, V. Ramadesigan, W. Gao, and V. R. Subramanian, “Direct, efficient, and real-time simulation of physics-based battery models for stand-alone PV-battery microgrids”, J. Electrochem. Soc., 164 (11), E3026-E3034 (2017).[pdf] (This paper received 949 full-text downloads and ranked #9 as the most-read articles for March 2017)

59. D. A. C. Beck, J. M. Carothers, V. R. Subramanian, and J. Pfaendtner, “Data Science: Accelerating Innovation and Discovery in Chemical Engineering”, AlChE Journal, 62, 1402–1416 (2016).[pdf]

58. M. T. Lawder, V. Ramadesigan, B. Suthar and V. R. Subramanian, “Extending explicit and linearly implicit ODE solvers for index-1 DAEs”, Computers and Chemical Engineering, 82, 283-292 (2015).[pdf]

57. B. Suthar, P. W. C. Northrop, D. Rife and V. R. Subramanian, “Effect of Porosity, Thickness and Tortuosity on Capacity Fade of Anode”, J. Electrochem. Soc., 162(9), A1708-A1717 (2015).[pdf]

56. P. W. C. Northrop, M. Pathak, D. Rife, S. De, S. Santhanagopalan and V. R. Subramanian, “Efficient Simulation and Model Reformulation of Two-Dimensional Electrochemical Thermal Behavior of Lithium-Ion Batteries”, J. Electrochem. Soc., 162(6), A940-A951 (2015).[pdf]

55. P. C. Urisanga, D. Rife, S. De and V. R. Subramanian, “Efficient Conservative Reformulation Schemes for Lithium

Intercalation”, J. Electrochem. Soc., 162(6), A852-A857 (2015).[pdf]

54. M. T. Lawder, V. Viswanathan and V. R. Subramanian, “Balancing autonomy and utilization of solar power and battery storage for demand based microgrids”, J. Power Sources, 279, 645-655 (2015).[pdf]

53. M. T. Lawder, P.W.C. Northrop and V. R. Subramanian, “Model-Based SEI Layer Growth and Capacity Fade Analysis for EV and PHEV Batteries and Drive Cycles”, J. Electrochem. Soc., 161(14), A2099-A2108 (2014).[pdf]

52. B. Suthar, P. W.C. Northrop, R. D. Braatz and V. R. Subramanian, “Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models”, J. Electrochem. Soc., 161(11), F3144-F3155 (2014).[pdf]

51. P. W. C. Northrop, B. Suthar, V. Ramadesigan, S. Santhanagopalan, R. D. Braatz and V. R. Subramanian, “Efficient Simulation and Reformulation of Lithium-Ion Battery Models for enabling Electric Transportation”, J. Electrochem. Soc., 161(8), E3149-E3157 (2014).[pdf]

50. M. T. Lawder, B. Suthar, P.W.C. Northrop, S. De, M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan and V. R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications”, Proceedings of IEEE, 102(6), 1014-1030 (2014).[pdf]

49. B. Suthar and V. R. Subramanian, “Lithium Intercalation in Core-Shell Materials–Theoretical Analysis,” J. Electrochem. Soc., 161(5), A682-A692 (2014).[pdf]

48. B. Suthar, V. Ramadesigan, S. De, R. D. Braatz and V. R. Subramanian, “Optimal Charging Profiles for Mechanically Constrained Lithium-ion Batteries,” Phy.Chem.Chem. Phy., 16(1), 277-287 (2014).[pdf]

47. S. De, B. Suthar, D. Rife, G. Sikha and V. R. Subramanian, “Efficient Reformulation of Solid Phase Diffusion in Electrochemical-Mechanical Coupled Models for Lithium-Ion Batteries: Effect of Intercalation Induced Stresses,” J. Electrochem. Soc., 160(10), A1675-A1683 (2013).[pdf]

46. S. De, P.W.C. Northrop, V. Ramadesigan and V. R. Subramanian, “Model-Based Simultaneous Optimization of Multiple Design Parameters for Lithium-ion Batteries for Maximization of Energy Density,” J. Power Sources, 221, 161-170 (2013).[pdf]

45. P. W. C. Northrop, P. A. Ramachandran, W. E. Schiesser, and V. R. Subramanian, “A Robust False Transient Method of Lines for Elliptic Partial Differential Equations,” Chem. Eng. Sci., 90; 32–39 (2013).[pdf]

44. N. A. Choudhury, P. W. C. Northrop, A. C. Crothers, S. Jain, and V. R. Subramanian, “Chitosan hydrogel-based electrode binder and electrolyte membrane for EDLCs: experimental studies and model validation,” J. Appl. Electrochem., 42 (11), 935-943 (2012).[pdf]

43. L. He, V. R. Subramanian, and Y. J. Tang, “Experimental analysis and model-based optimization of microalgae growth in photobioreactors using flue gas,” Biomass Bioenerg., 41, 131-138, (2012).[pdf]

42. A. Guduru, P. W. C. Northrop, S. Jain, A. Crothers, T. R. Marchant, and V. R. Subramanian, “Analytical solution for electrolyte concentration distribution in lithium-ion batteries,” J. Appl. Electrochem., 42, 189-199 (2012).[pdf]

41. V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, “Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective,” J. Electrochem. Soc., 159(3), R31-R45 (2012). [pdf][Critical Review]

40. P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, “Coordinate Transformation, Orthogonal Collocation and Model Reformulation for Simulating Electrochemical-Thermal Behavior of Lithium-ion Battery Stacks,” J. Electrochem. Soc., 158(12), A1461-A1477 (2011). [pdf]

39. R. N. Methekar, V. Ramadesigan, J. Carl Pirkle Jr., and V. R. Subramanian, “A perturbation approach for consistent initialization of index-1 explicit Differential-Algebraic Equations arising from battery model simulations,” Comput. Chem. Eng., 35(11), 2227-2234 (2011). [pdf]

38. V. Ramadesigan, K. Chen, N.A. Burns, V. Boovaragavan, R. D. Braatz, and V. R. Subramanian, “Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models,” J. Electrochem. Soc., 158(9), A1048-A1054 (2011). [pdf]

37. A. Elkamel, F. H. Bellamine, and V. R. Subramanian, “Computer Facilitated Generalized Coordinate Transformations of Partial Differential Equations with Engineering Applications,” Comput. Appl. Eng. Educ., 19, 365-376 (2011). [pdf]

36. R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Braatz, and V. R. Subramanian, “Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-ion Batteries: Passive Layer Formation,” J. Electrochem. Soc., 158(4), A363-A370 (2011). [pdf]

35. V. Ramadesigan, R. N. Methekar, F. Latinwo, R. D. Braatz, and V. R. Subramanian, “Optimal Porosity Distribution for Minimized Ohmic Drop across a Porous Electrode,” J. Electrochem. Soc., 157(12), A1328-A1334 (2010). [pdf]

34. B. Prabhala, M. Panchagnula, V. R. Subramanian, and S. Vedantam, “Perturbation Solution of the Shape of a Nonaxisymmetric Sessile Drop,” Langmuir, 26(13), 10717–10724, (2010).[pdf]

33. V. Ramadesigan, V. Boovaragavan, J. Carl Pirkle Jr., and V. R. Subramanian, “Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-ion Battery Models,” J. Electrochem. Soc., 157(7), A854-A860, (2010).[pdf]

32. V. Boovaragavan, V. Ramadesigan, M. V. Panchagnula, and V. R. Subramanian, “A continuum representation for simulating discrete events for battery operations,” J. Electrochem. Soc., 157 (1), A98-A104, (2010). [pdf]

31. V. Boovaragavan, R. Methekar, V. Ramadesigan, and V. R. Subramanian, “A Mathematical model of the lead-acid battery to address the effect of corrosion,” J. Electrochem. Soc., 156 (11), A854-A862, (2009). [pdf]

30. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M. Arabandi, “Mathematical Model Reformulation for Lithium-ion Battery Simulation: Galvanostatic Boundary Conditions,” J. Electrochem. Soc., 156 (4), A260-A271 (2009). [pdf]

29. S. Harinipriya, V. D. Diwakar, and V. R. Subramanian, “Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy,” J. Electrochem. Soc., 155 (12), A875-A878 (2008). [pdf]

28. V. Boovaragavan, S. Harinipriya, and V. R. Subramanian, “Towards accurate real-time (milliseconds) parameter estimation of Lithium-ion batteries using reformulated physics based models,” J. Power Sources, 183(1), 361-365 (2008). [pdf]

27. S. Harinipriya, and V. R. Subramanian, “Monte Carlo Simulation of Electrodeposition of Copper: A Multistep Free Energy Calculation,”J. Phys. Chem. B, 1112, 4036-4047 (2008). [pdf]

26. V. Boovaragavan, and V. R. Subramanian, “Evaluation of optimal discharge current profile for planar electrodes to maximize the utilization,” J. Power Sources 173(2), 1006-1011, (2007). [pdf]

25. V. R. Subramanian, V. Boovaragavan, and V. D. Diwakar, “Towards real-time (milliseconds) simulation of physics based lithium-ion battery models,” Electrochem. Solid St., 10(11) A255-A260 (2007). [pdf]

24. V. Boovaragavan, and V. R. Subramanian, “A quick and efficient method for consistent initialization of battery models,” Electrochem. Commun., 9(7), 1772-1777 (2007). [pdf]

23. V. R. Subramanian, V. Boovaragavan, K. Potukuchi, V. D. Diwakar, and A. Guduru, “A Novel Numerical Symbolic Solution for AC Impedance Response of Electrochemical Devices,” Electrochem. Solid St., 10(2), A25-A28 (2007). [pdf]

22. V. R. Subramanian, “Computer Facilitated Mathematical Methods in Chemical Engineering – Similarity Solution,” Chem. Eng. Educ., 40(4), 307-312 (2006). [URL]

21. V. R. Subramanian, V. D. Diwakar, D. Tapriyal, “Efficient Macro-Micro Scale Coupled Modeling of Batteries,” J. Electrochem. Soc., 152(10), A2002-A2008 (2005). [pdf]

20. V. K. Maddirala, and V. R. Subramanian, “An Approximate closed form Solution for Pressure and Velocity Distribution in the Cathode Chamber of a PEM Fuel Cell,” J. Power Sources, 143(1-2), 173-178 (2005). [pdf]

19. V. D. Diwakar, and V. R. Subramanian, “Effect of Varying Electrolyte Conductivity on the Electrochemical Behavior of Porous Electrodes,” J. Electrochem. Soc., 152(5), A984-A988 (2005). [pdf]

18. S. Devan, V. R. Subramanian and R. E. White, “Transient Analysis of Porous Electrodes,” J. Electrochem. Soc., 152(5), A947-A955 (2005). [pdf]

17. V. R. Subramanian, S. Devan, and R. E. White, “An Approximate Solution for a Pseudo Capacitor,” J. Power Sources, 135(1-2), 361-367 (2004). [pdf]

16. V. R. Subramanian and D. Tapriyal, “A Boundary Condition for Porous Electrodes,” Electrochem. Solid St., 7(9), A259-A263 (2004). [pdf]

15. S. Devan, V. R. Subramanian, and R. E. White, “Analytical Solution for the Impedance of a Porous Electrode,” J. Electrochem. Soc., 151(6), A905-A913 (2004). [pdf]

14. V. R. Subramanian, and R. E. White, “Semianalytical Method of Lines for Solving Elliptic Partial Differential Equations,” Chem. Eng. Sci., 59(4), 781 (2004). [pdf]

13. V. R. Subramanian, and R. E. White, “Simulating Shape Changes during Electrodeposition – Primary and Secondary Current Distribution,” J. Electrochem. Soc., 149(10), C498 (2002). [pdf]

12. Q. Guo, V. R. Subramanian, J. W. Weidner, and R. E. White, “Estimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique,” J. Electrochem. Soc., 149(3), A307-A318 (2002). [pdf]

11. V. R. Subramanian, J. A. Ritter, and R. E. White, “Approximate Solutions for Galvanostatic Discharge of Spherical Particles -1. Constant Diffusion Coefficient,” J. Electrochem. Soc., 148(11), E444-E449 (2001). [pdf]

10. V. R. Subramanian, P. Yu, B. N. Popov, and R. E. White, “Modeling Lithium Diffusion in Nickel Composite Graphite,” J. Power Sources, 96(2), 396-405 (2001). [pdf]

9. V. R. Subramanian, and R. E. White, “A new separation of variables method for composite electrodes under galvanostatic boundary conditions,” J. Power Sources, 96(2), 385-395 (2001). [pdf]

8. V. R. Subramanian, and R. E. White, “Symbolic solutions for boundary value problems using Maple,” Comp. Chem. Eng., 24(11), 2405-2416 (2000). [pdf]

7. R. E. White, and V. R. Subramanian, “Mathematical Modeling of Electrodeposition,” Plating & Surface Finishing, 41st William Blum Lecture, 87(9), 42-45 (2000). [pdf]

6. V. R. Subramanian, and R. E. White, “Solving Differential Equations with Maple,” Chem. Eng. Educ., 34(4), 328-336 (2000). [URL]

5. V. R. Subramanian, H. J. Ploehn, and R. E. White, “Shrinking Core Model for the Discharge of Metal Hydride Electrode,” J. Electrochem. Soc., 147(8), 2868-2873 (2000). [pdf]

4. G. G. Botte, V. R. Subramanian, and R. E. White, “Mathematical Modeling of Secondary Lithium Batteries,” Electrochim. Acta, (50th Anniversary Special Issue) 45 (15-16), 2595-2609 (2000). [pdf]

3. V. R. Subramanian and R. E. White, “A Semianalytical Method for Predicting Primary and Secondary Current Density Distributions: Linear and Nonlinear Boundary Conditions,” J. Electrochem. Soc., 147 (5), 1636-1644 (2000). [pdf]

2. V. R. Subramanian, B. S. Haran, and R. E. White, “Series solutions for nonlinear boundary value problems using a symbolic successive substitution method,” Comp. Chem. Engng., 23(3), 287-296 (1999). [pdf]

1. V. S. Ramanan, M. Muthukumar, M. V. J. Reddy, and B. Emmanuel, “Green’s functions for the Laplace equation in a 3-layer medium, Boundary Element Integrals and their application to Cathodic Protection,” Eng. Anal. Bound. Elem., 23(9), 777-786 (1999). [pdf]

**Books and Book Chapters:**

3. P. Balbuena, and V. R. Subramanian, Editors, “Modern Aspects of Electrochemistry Vol 50 – Theory and Experiment in Electrocatalysis,” ISBN: 978-1-4419-5593-7, Springer, 2010. [Springer]

2. R. E. White, and V. R. Subramanian, “Computational Methods in Chemical Engineering with Maple,” Springer Verlag, ISBN: 978-3-642-04310-9, Springer, 2010. A textbook for Researchers and professionals. [Springer][Cover]

1. V. Boovaragavan, V. D. Diwakar, and V. R. Subramanian, book chapter, “Review of various simulation approaches for Lithium-ion battery models,” Recent Research Developments in Electrochemistry, submitted, January 2007. (Invited article, editor-Dr. Sheng S. Zhang).

**Other Publications:**

15. T. Jang, L. Mishra, K. Shah, A. Subramaniam, M. Uppaluri, S. A. Roberts, and V. R. Subramanian, “Towards Real-Time Simulation of Two-Dimensional Models for Electrodeposition/Stripping in Lithium-Metal Batteries”, ECS Trans., 104(1), 131, (2021). [pdf]

14. S. B. Lee, H. D. Pratt III, T. M. Anderson, K. Mitra, B. R. Chalamala, and V. R. Subramanian, “Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells”, ECS Trans., 85 (5), 43-64 (2018).[pdf]

13. M. Pathak, D. Sonawane, S. Santhanagopalan, R. D. Braarz, and V. R. Subramanian, “Analyzing and Minimizing Capacity Fade through Optimal Model-based Control – Theory and Experimental Validation”, ECS Trans., 75 (23), 51-75 (2017). [pdf] [**Invited**]

12. Y. Qi, S. Kolluria, D. T. Schwartz, V. R. Subramanian, “Estimating and Identifying Parameters from Charge-Discharge Curves of

Lithium-ion Batteries”, ECS Trans., 75 (20), 121-137 (2017).[pdf]

11. D. Sonawane, M. Pathak, and V. R. Subramanian, “Convergence Rates for Direct Tanscription of Optimal Control Problems Using Second Derivative Methods”, American Control Conference (ACC), 2016, 215-220, 6-8 July 2016.[pdf]

10. B. Suthar, V. Ramadesigan, P.W.C. Northrop, B. Gopaluni, S. Santhanagopalan, R.D. Braatz, and V.R. Subramanian, “Optimal control and state estimation of lithium-ion batteries using reformulated models,” American Control Conference (ACC), 2013 , 5350-5355, 17-19 June 2013. [pdf]

9. R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Braatz, and V. R. Subramanian, ”Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries: Passive layer formation,“ American Control Conference (ACC), 1512-1517, June 29 – July 1 2011.[pdf]

8. V. R. Subramanian and R. D. Braatz, “Current Needs in Electrochemical Engineering Education,” The Electrochemical Society’s Interface, 19 (2), (2010).[pdf] [**Invited Article**]

7. R. N. Methekar, V. Boovaragavan, M. Arabandi, V. Ramadesigan, V. R. Subramanian, F. Latinwo and R. D. Braatz, “Optimal Spatial Distribution of Microstructure in Porous Electrodes for Li-ion Batteries,” American Control Conference (ACC), 6600-6605, June 30 – July 2 2010.[pdf]

6. R. N. Methekar, V. Ramadesigan, R. D. Braatz, and V. R. Subramanian, “Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization,” ECS Trans., 25 (35), 139-146 (2010). [pdf]

5. V. Ramadesigan, V. Boovaragavan, M. Arabandi, K. Chen, H. Tuskamoto, R. D. Braatz, and V. R. Subramanian, “Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models,” ECS Trans., 19, 11-19 (2009). [pdf]

4. R. N. Methekar, V. Ramadesigan, V. Boovaragavan, V. R. Subramanian, and C. Rice-York, “Estimation of Optimum Operating Profile for PEMFC,” ECS Trans., 25 (1), 59-63 (2009). [pdf]

3. V. Ramadesigan, V. Boovaragavan, J. Carl Pirkle Jr., and V. R. Subramanian, “Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-ion Battery Models,” ECS Trans., 16(29), 129-134 (2009). [pdf]

2. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, K. Chen, and R. D. Braatz, “Model Reformulation and Design of Lithium Ion Batteries,” Design for Energy and the Environment: Proceedings of the 7th International Conference on Foundations of Computer-Aided Process Design, edited by A.A. Linninger and M.M. El-Halwagi, Taylor and Francis, London, 987 (2009). [pdf]

1. V. R. Subramanian, and R. E. White, “Simulating Series Reactions with Maple,” CACHE News, Spring 2002. [URL].

**keynote Lectures:**

1. V. R. Subramanian, “Novel Semianalytical and Symbolic Solutions for Electrochemical Systems,” ANZIAM (Australia New Zealand Society for Industrial and Applied Mathematics) NSW regional meeting, Jervis Bay, NSW, Australia, December 9, 2006.

**Invited Presentations:**

28. Role of chemical engineering, robust algorithms and computing in improving the efficiency and reliability of electric transportation and renewable microgrids, Washington University’s Net Impact Meeting, March 17, 2014.

27. Battery Tech: from flashlights to Teslas and beyond, Schlafly Bottleworks, Washington University’s Science on Tap Series, January 29, 2014.

26. Mathematics in the driver’s seat, Institute for Pure and Applied Mathematics, NSF funded Workshop on batteries and fuel cells, November 6, 2013.

25. Modeling and simulation of lithium-ion batteries: from a systems engineering perspective, Department of Electrical and Systems Engineering, Washington University, April 22, 2013.

24. Mathematics in the driver’s seat, Department of mathematics, Washington University, April 1, 2013.

23. Model based design and control of lithium-ion batteries: from material synthesis in the lab to BMS design for the dashboard, Advanced Diagnostics, Automation & Control Laboratory, North Carolina State University, March 22, 2013.

22. Towards optimal design and use of lithium-ion batteries, Department of Chemical & Molecular Engineering, Case Western Reserve University, March 22, 2012.

21. Multiscale modeling and simulation of Lithium-ion batteries – A systems engineering perspective, Challenges in electrical energy storage, The first US-Taiwan workshop on materials and systems, NTUST (Taiwan), April 23-24, 2011.

20. Model reformulation, capacity fade analysis and optimization of battery models, Space Power Workshop, LA, CA, April 19, 2011.

19. Multiscale modeling and simulation of Lithium-ion batteries- A systems engineering perspective, Department of Chemical and Biological Engineering, Missouri University of Science and Technology, Rolla, MO, April 5, 2011.

18. Systems Engineering of Lithium Ion Batteries, ASME 2010 International Mechanical Engineering Congress & Exposition, Vancouver, Canada, November 17, 2010.

17. Systems Engineering of Lithium Ion Batteries, Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, November 3, 2010.

16. Continuum and Multiscale Modeling of Performance Curves and Capacity Fade in Lithium-ion Batteries, Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN, October 13, 2009.

15. Current needs in lithium-ion battery technology, Tennessee Valley Authority, Knoxville, TN, July 9, 2009, .

14. Modeling and Design of Lithium-ion Batteries, Foundations of Computer Aided Process Design , Breckenridge 2009, CO, June 11, 2009.

13. V. R. Subramanian, Writing proposals and obtaining external research funds – Personal Perspectives, Tennessee Tech University, Cookeville, TN, November 24, 2008.

12. V. R. Subramanian, Model Reformulation for Lithium-ion Batteries, Department of Chemical Engineering, University of Washington, Seattle, WA, September 29, 2008.

11. V. R. Subramanian, Addressing Simulation Challenges in Lithium-ion Battery Modeling, Navy Research Lab, Crane, IN, May 28, 2008.

10. V. R. Subramanian, Addressing Simulation Challenges in Lithium-ion Battery Modeling, Department of Chemical Engineering, State University of New York Buffalo, April 16, 2008.

9. V. R. Subramanian, Towards Real-time Simulation of Electrochemical Power Sources, American Chemical Society, South East Regional Meeting, Greenville, SC, October 26, 2007.

8. V. R. Subramanian, Modeling Electrochemical Power Sources in Hybrid Environments, School of Mathematics and Applied Statistics, University of Wollongong, WOLLONGONG NSW, Australia, December 15, 2006. (Invited by Dr. Mark Nelson).

7. V. R. Subramanian, Novel Symbolic and Semianalytical Solutions for Electrochemical Systems, Department of Chemical Engineering, Vanderbilt University, Nashville, October 2, 2006. (Invited by Dr. Clare McCabe).

6. V. R. Subramanian, Novel Semianalytical and Symbolic Solutions for Electrochemical Systems, Oak Ridge National Laboratory, Oak Ridge, April 18, 2006. (Invited by Dr. Leonard Gray, Mathematics Sciences Section, Oakridge National Laboratory).

5. V. R. Subramanian, Novel Semianalytical and Symbolic Solutions for Electrochemical Systems, Central Electrochemical Research Institute, CECRI, Karaikudi, India, June 9, 2006. (Invited by Dr. Bosco Emmanuel).

4. V. R. Subramanian, Modeling Electrochemical Power Sources in Hybrid Environments, Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, November 8, 2005. (Invited by Dr. Todd French).

3. Mathematical Modeling of Lithium-ion Batteries – Governing Equations and Numerical Solution, National Reconnaissance Office, Rockville, MD March 1-3, 2004. (Invited Workshop conducted by V. R. Subramanian).

2. V. R. Subramanian, Simulation and Analysis of Electrochemical Power Sources, Department of Chemical Engineering, University of Tennessee, Knoxville, January 13, 2004. (Invited by Dr. Brian Edwards).

1. V. R. Subramanian, Simulation and Analysis of Electrochemical Systems, Central Electrochemical Research Institute, Karaikudi, India, June 18, 2003 (Invited by Dr. N. G. Renganathan).